

A Feasibility Study to Address Nuclear Quality Assurance Challenges

Chandu Bolisetti, Ph.D.

Senior Scientist, Idaho National Laboratory

04/01/2025

Nuclear Quality Assurance (NQA) Requirements are Ubiquitous

Challenges in Implementing NQA Requirements

- NQA requirements are associated with significant cost escalation. Conservative approaches are often employed due to lack of clarity or experience and to avoid licensing risk.
- Nuclear-certified suppliers are sparse causing supply-chain bottlenecks and further cost escalation.
- In many cases NQA requirements have not kept up with technological developments (e.g., in construction, manufacturing, software development) and are in need revision or modernization.
- Prescriptive nature of NQA requirements hinders
 effectively leveraging intrinsic safety features of
 advanced reactor technologies.

Flow of NQA Requirements

Regulations

NQA-1

Design Codes

NRIC-NEI-EPRI Nuclear Quality Assurance Challenges Workshop

- Held on Dec 5-6, 2024, in Washington, DC.
- Attracted about 85 attendees from 38 organizations including 24 speakers, including reactor developers, suppliers, code committee representatives (ASME NQA-1, mechanical and civil/structural design codes), NRC, and DOE.
- Presentations on origin and flow of NQA requirements, best practices, industry initiatives to improve their application, challenges faced by reactor developers, and opportunities for improvement.
- Stakeholder input from the workshop was used to develop a roadmap to address NQA challenges.
- Strong industry interest and **sense of urgency** in addressing these challenges with many demonstration projects on the horizon.

https://nric.inl.gov/ event/2024-nqaworkshop/

Panelists

Mike Fish

MFC Quality and

Procurement Engineering

Manager

INL

Cultivate efficient application of NQA

Sanj Malushte
Sr. Director of Technology,
Division of Infrastructure
Research and Innovative
Solutions
PARI

Optimize and modernize civil/construction QA requirements

Jon FacemireSenior Project
Manager, New Nuclear
NEI

Leverage riskinformed performance-based (RIPB) approaches

Ross Hays
Digital Engineering
Researcher
INL

Modernize SQA practices to enable use of digital tools

Mark Richter Technical Advisor NEI

Increase flexibility in meeting regulations

Pathways to Address NQA Challenges

	 Cultivate efficient application of requirements. 	Benchmark with developers; Collect CGD best practices; Develop NQA-1 guidance and training.
蓮木	2. Review, optimize, and modernize requirements.	Identify and revise outdated or unnecessarily onerous requirements.
	3. Deploy new methodologies to minimize or manage requirements.	Deploy risk-informed performance-based (RIPB) approaches, digital engineering (DE), and digital twins (DT).
5	4. Increase flexibility in meeting regulations.	Develop pathways for using commercial quality standards (e.g., ISO 9001), and non-nuclear codes and standards for design.
夸	5. Demonstrate execution of best practices.	Employ best practices in demonstration projects and document lessons learned.

Impact

- **Cost Reduction**: Lower cost of QA program; improved constructability and less rework; lower prices for SR systems due to expanded supply chain; leverage benefits of advanced reactor safety.
- **Schedule Reduction**: Shorter lead times due to expanded supply chain; faster construction and less rework; mitigation of delays from non-compliance.
- Reduced Licensing Risk: Better guidance for using RIPB and digital tools including DE/DT and AI.
- **Faster Innovation**: Lower barrier-to-entry for "new" and non-nuclear commercial technologies.

W. Robb Stewart (Alva) and DOE Liftoff Report

A "Whole-of-Industry" Effort

