NUCLEAR QUALITY REQUIREMENTS

A STRUCTURAL ENGINEER'S PERSPECTIVE

Fred Grant, PE (CA)

Principal

5 December 2024

Scope & Perspective

- Scope: structure design & construction
- Perspective:
 - Structural engineer working on the "front lines" with AR developers to develop confective structure designs
 - Background in structural risk & reliability (seismic PRA, structure fragility)
 - Beyond the nuclear industry, SGH's business: ensuring commercial, industrial, & institutional structures are high quality & reliable
 - Highly effective, ttexted
 - Does not result in 2x cost premiums 3x 2x ost/schedule overruns
 - Little resemblance to current state of nuclear structure design & construction

- Dumb quality requirements:
 - → Ineffective at making structures safer
 - → Expensive, e.g.:
 - 2x-10x "nuclear factor" on costs
 - 2x-3x cost overruns
 - 2x-3x schedule delays
 - Cancelled projects
 - → No commensurate public safety benefit

AR Developers Need Highle Structures

Cannot afford dumb requirements

Effectiveness

	 Inexpensive & Effective This is where we want to be Commercial/industrial best practices, e.g., peer review, special inspections 	Inexpensive & Ineffective • Lower priority
•	 Expensive & Effective Less dumb - some necessary evils? Look for inexpensive alternatives, e.g., trade inexpensive margin for expensive certainty ("assurance") to achieve same reliability 	Expensive & Ineffective • Dumb

Expensive? Yes... Effective??

- Many operating fleet structures designed before cur paradigm of nuclear quality requirements:
 - ACI 349 (1976)
 - AISC Spec. for SR Nuclear Structures (1974?)
 - ANSI N45.2 (N/QPArecursor) (endorsed 1973)
- RG 1.142 (1984)Cf 318 has long been the basis for design of concrete buildings in the United States an used by the NRC staff as a starting point in evaluating adequacy of concrete structures in nuclear power p
- Any major structural reliability problems that would I prevented by current special nuclear quality require
- Any PRAsseismic or otherwitheat identified structural failures as important due to lack of special nuclear or requirements?
- No "QA factor" in structural fragility analysis

Construction Productivity: Nuclear vs. Other Industries

(Eash-Gates, 2020)

WHAT WE NEED

Understand Cost Impacts

- NQA gets a bad rap, but to what extent is it actually responsible for costs?
 - vs. other special nuclear req's (e.g., req's in design/construction codes, NRC inspection
 - vs. ineffective / inefficient implementation of NQA
- Efforts to reduce costs (questitle) or otherwise) are only as good as the cost estimated
 - Cost estimates often use simplified "nuclear factor" for SR structures. Little/no visibility requirements drive those costs.
- Some good work has been done: MIT studies, EPRI study, etc.
 - MIT study on probabilistic cost (led by Robb Stewart) is good. Can/should be developed
- Itemize and analyze the requirements & cost impacts
- Ask the experts orkshops, interviews, etc.
- Bid designs with nuclear-rounderar requirements

Understand Effectiveness

- What quality measures actually affect structural reliability?
 - Failure to implement basic quality measures (ineffective management, culture)
 - Schedule and budget pressure (expensive quality measures can backfire!)
 - Inexperienced / unqualified engineers; lack of oversight
 - Rational, sensible, simple, understandable, and constructible structural designs
 - •
- Suspected expensive & ineffective requirements... needs confirmation
 - Material traceability requirements & associated paperwork
 - Special, tighter nuclear construction tolerances
 - Increased inspection, testing, NDE requirements & frequencies
 - Special nuclear concrete & steel material requirements (strength, durability)

Less Expensive and Moffective Alternatives

- Alternative ways to meet 10CFR50 Appendix B
 - Learn from experts in commercial & industrial structures
 - Decades of experience while nuclear business was hibernating
 - Best practices for deliveringulailighty, missionitical structures wetersonable assurance
 - Focus on performance: e.g., can some QA measures be replaced by increasing reducing uncertainty?
 - For structures, reliability (safety) is a function of margin and uncertainty.
 - Assurance assure → make sure or certain, i.e., reduce uncertainty (in theory)
 - Margin can sometimes be far more cost effective, e.g., concrete strength is cheap
 - Structure-specific guidance / examples for effective graded application of NQA-1
- Whatever we do, it has to be quick, like yesterday.
- (RIPB design to limit scope of SSCs subject to App. B)