
Peer review of civil structures: why, by, when, scope

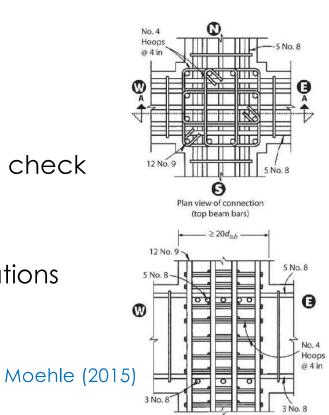
Andrew Whittaker, Ph.D., P.E. (1989), S.E. (1991), CA Chair, ASCE Nuclear Standards Committee Brian McDonald, Ph.D., P.E. (1990), S.E. (1999), CA Chair, ASCE DANS Committee

W. Robb Stewart (Alva) and DOE LPO

Peer review of civil structures

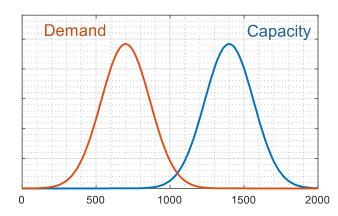
- History?
 - Regions of high seismic hazard (e.g., CA)
 - Limit state A (collapse prevention) through Limit State D (essentially elastic)
 - Seismically isolated (i.e., high performance) structures
 - Since the early 1990s
 - ASCE/SEI 7-22, Sections
 - CA regulators, including OSHPD (or HCAI) and DSA
 - Performance-based seismic design
 - Infrastructure projects
 - Tall buildings in the US and abroad, LATBSDC

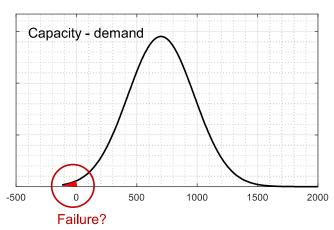
- Mhh5
 - Ensure quality of the engineered product
 - Construction drawings, supported by specifications
- Bàs
 - Peers, or better, of the design team leads
 - "...shall consist of experts who are widely respected and recognized for their expertise in relevant fields..." LATBSDC (2024)
 - Independent of the design team, contractor, owner, regulator
 - Answer to the regulator (e.g., OSHPD)
- When?
 - Start at scheme design, ends with construction documents



Scope

- High-level, and not to replace regulator plan check
- Design criteria
- Hazard analysis (e.g., seismic, flood, wind)
- Geotechnical engineering, including foundations
- Structural engineering
- Nonlinear dynamic analysis, including ISRS
- Seismic isolation, if used
- Specifications, if non-typical
- Construction details (e.g., main components and connections)




Elevation

NRIC, Washington, DC, December 2024

An inconvenient truth

Hypotheses

- Modern standards treat loads and strengths as random variables that can be fit to statistical distributions
- Component failure is postulated to occur when the randomly low strength falls below a randomly high load
- Bell curves, and thus failure rates, can be calculated from standards and QA/QC measures, as shown in the graph
- These graphs suggest that imposing ever more onerous QA/QC to skinny-up the bell curves will make failure much less likely

And plain wrong

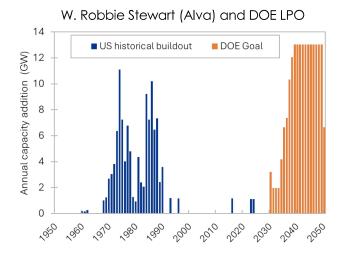
- Nowak* and others show actual failure rates to be much higher than calculated (2+ orders of magnitude)
- Why? Almost all structural failures are due to **human error** in design and construction not contemplated in these curves
- How do we prevent these mistakes?
 - Independent design peer reviews
 - Special inspections by knowledgeable professionals
 - Simplifying (but not weakening) standards and regulations

^{*} Reliability of Structures, Nowak and Collins, 2000

ASCE 92-25

- ASCE 92 = merger of ASCE 4-16 and ASCE 43-19
 - ASCE 4-16 = analysis
 - ASCE 43-19 = design
 - Roots of both documents in the late 2000s
 - Need for explicit performance-based design procedures
 - Microreactors, advanced reactors, LLWRs, DOE facilities
 - Publish in late 2025
 - Driven by WH, SDO collaborative, developers
 - Staying in our (ASCE) lane
- Draft TOC
 - · Introduction, including peer review
 - Earthquake ground shaking
 - Seismic analysis
 - Seismic design
 - Seismic isolation

Performance-Based Seismic Analysis and Design of Safety-Related Nuclear Facilities


McDonald and Whittaker, 2024

NRIC, Washington, DC, December 2024

<u>awhittak@buffalo.edu</u> <u>mcdonald@exponent.com</u>

NRIC, Washington, DC, December 2024

