

Using NEI 18-04 to Risk Inform Design, and Considerations for QA Practices for Structures

John Richards
Senior Technical Executive
Risk & Safety Management, EPRI

NRIC NQA Challenges Workshop December 5, 2024

LMP Risk-Informed Performance-Based (RIPB) Design

- NEI 18-04, Risk-Informed Performance-Based Technology Inclusive Guidance for Non-Light Water Reactor Licensing Basis Development
 - NEI 18-04 provides alternate criteria under the Licensing Modernization Project (LMP)
 - Uses a RIPB process for selection of Licensing Basis Events (LBEs), safety classification of structures, systems, and components (SSCs), and associated risk-informed special treatments
 - A key tool in that process is the Frequency-Consequence Target
- EPRI performed research to explore use of the criteria for external hazards, using seismic hazard as an example
- Selection of SSC codes and standards was integral to establishing the seismic performance base, in terms of fragilities

Figure 3-1. Frequency-Consequence Target

Example PRA System Model

Tank

 Example model is general and relevant to multiple AR designs

- For each item in the model, establish initial design assumptions:
 - Safety-Related
 - Safety-Related design standards, factors of safety, performance requirements, etc.
 - Non-Safety-Related with Special Treatment
 - Commercial standards with special treatment necessary to achieve the performance target
 - Non-Safety-Related
 - Commercial standards, factors of safety, performance requirements, QA, etc.
- Each of these choices establishes the performance basis, and the resulting seismic fragility

SHR Fault

SHR System Fails

to Provide Adequate Flow

Frequency-Consequence – Initial Design

Key Results from Risk Quantification Using Initial Design Assumptions

- Several event sequences exceed the F-C Target (Not favorable)
- One Design Basis Accident based on the DBEs does not meet the 25rem dose regulatory limit in 10 CFR 50.34
 - → Design revision is necessary

System ID

RV&S

Reactor Vesse

and Supports

Reactor Building

SCRAM

SCRAM Insertior

SCRAM-PASS

SHR

System for Heat

BHS

Backup Heat

Frequency-Consequence - Revise Design

- Potential Design Revision Options
 - Reconsider the seismic design basis selected for SSCs
 - Impose additional or special requirements on SSC designs
 - Reclassify SSCs
 - Limit dose consequences by introducing barriers
 - A combination of the above options

System ID

RV&S

Reactor Vess

SCRAM

SHR

BHS

Frequency-Consequence – Revised Design

- Selected Design Revisions
 - Limiting the demand-to-capacity ratio for RB, RV&S, and SCRAM
 - Best cost-benefit of several options considered
- Key Takeaway
 - LMP allows optimizing design for cost-benefit purposes as it progresses

LMP and RI Design for External Hazards – Insights

Challenges

- An initial PRA is needed at early RIPB design stages, which can be challenging since there is limited site-specific data and the early PRA insights may have high uncertainty
- Implementing RIPB/LMP framework requires close collaboration between multiple technical disciplines in design and PRA teams

Benefits

- Risk-informed external hazards design can be used to risk-inform design requirements and holds potential to make plant designs more costeffective, while maintaining high levels of safety
- Risk-informed performance-based design considerations can inform the selection of codes and standards

Follow-Up Research

- Criteria for risk-informed codes & standards for structural design
 - Some Civil Standards already include performance-based criteria
 - ASCE/SEI 7-22, Minimum Design Loads and Associated Criteria for Buildings and Other Structures
 - ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities
 - For non-safety related (NSR) SSCs and non-safety related with special treatment (NSRST)
 SSCs, Commercial Standards could be used for structural design
 - For safety related (SR) SSCs, Nuclear Standards could be used for structural design for loadings associated with functions associated with Design Basis Events, and Commercial Standards for other loadings
 - For example, if the AR operates at atmospheric pressure, the reactor building safety function might be to provide shielding and avoid collapsing in a seismic or high wind event
- Criteria for construction QA
 - What criteria is necessary to support achieving the performance goals?

