

Advanced Test Reactor (ATR)

Capabilities in Support of Advanced Reactor Development

Daniel K. Sluder, PE

ATR Experiment Engineer

Z Overview

- 1. ATR Description
- 2. Experiment Overview
- 3. Thermal and Fast Spectrum Testing
- 4. Advanced Material Testing

ATR Description (Facility)

- Reactor
 - 250MW_t
 - Light Water
- Storage Canal
 - Storage
 - Wet sizing
- Gamma Irradiator
 - Driver Fuel Source
 - $\leq 5 \times 10^6 R/hr$ exposure
- Dry Transfer Cubicle (DTC)
 - Sizing facility
 - Air atmosphere

ATR Description (Reactor)

- General Parameters
 - Low Temperature and Pressure
 - Light Water
 - Aluminum Clad Driver Fuel
- Clover Shape Design
 - Reactor "Tilt" Capability
 - Nine Flux Traps
- Two types of operational cycles
 - Standard (~110 MW, 60 day)
 - PALM (~170 MW, ~7 day)

Experiment Overview

- Variety of Experiment Positions
 - Flux Traps
 - Inboard Positions
 - Outboard Positions
- Variety of Experiment Types
 - γ-Irradiation
 - Simple Capsule
 - Instrumented Capsule
 - Gas Loop
 - Pressurized Water Loop (PWL)

Experiment Overview (y-Irradiation)

- Dry Tube Gamma Irradiation
 - Testing of fuel, materials, and instrumentation
 - Leeway on materials and design
- High exposure rates
 - $\leq 5 \times 10^6 R/hr$ (4.4 Gy/hr)
 - Driver Fuel Source Term
 - 5% decrease/day in exposure rate
- Benefits:
 - Cost effective
 - Minimal Restrictions

Experiment Overview (Simple Capsule)

- Simple capsule containment
 - Fuel and material testing
 - Temperature determined by fill gas mix
 - Melt/fluence wires for PIE
- Neutron irradiation
 - High flux
 - Standard or PALM cycles
 - Flux trap, inboard, or outboard positions
- Cost effective

Experiment Overview (Instrumented Capsule)

- Simple capsule containment
 - Fuel and material testing
 - Temperature controlled with predetermined gas mixture
- Instrument Leads
 - In-situ measurements of material properties
 - Temperature, conductivity

Experiment Overview (Gas Loop)

- Active Monitoring
 - Real-time specimen data
- Active Control
 - Ability to vary gas mixture
 - Real-time temperature Control
- Measurement flexibility
 - Speciation
 - Migration

Experiment Overview (PWL)

- All advantages of a gas loop
- Pressurized water environment

Thermal and Fast Spectrum Testing

- ATR is primarily a thermal test reactor
- Thermal flux range
 - Position dependent
 - Between 1×10^{13} and $4.4 \times 10^{14} \frac{n}{cm^2s}$

Unperturbed five-energy group neutron flux intensity profiles over the active core length of the ATR center flux trap for total reactor power of 125 MW.

Thermal and Fast Spectrum Testing

Thermal and Fast Spectrum Testing

- Fast Reactor Environments may be simulated
- Cadmium neutron filters are used to reduce thermal flux
- Booster fuel elements have also been proposed to increase fast flux (<u>Curnutt 2022</u>)

Advanced Material Testing

- Standard fuel and materials testing
- Advanced fuel and materials testing capability
 - Sodium bonded fuels
 - Molten salt fuel (NaCL-UCl $_3$ and UF $_4$ -NaF-KF)
 - Metallic eutectic mixtures

Data from an experiment safety evaluation for sodium bonded experiments.

Z References

- 1. J. Campbell, "ATR User Guide," INL/EXT-21-64328-Rev000, September 2021.
- 2. C. Downey, et. al., "Design of a First-of-A-Kind Instrumented Advanced Test Reactor Irradiation Capsule Experiment for in Situ Thermal Conductivity Measurements of Metallic Fuel," https://dx.doi.org/10.2139/ssrn.4764661
- 3. B. Curnutt, et. al., "A neutronics investigation simulating fast reactor environments in the thermal-spectrum advanced test reactor," Nucl. Eng. Des., Vo. 387, February 2022.
- 4. D. Sluder, et. al., "Safety Considerations for Advanced Material Irradiation at the Advanced Test Reactor," INL/CON-24-76144-Rev000, June 2024.

